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The Corey's sy nthon approach is formalized by a special type of graph grammar. The graph 
language induced by this grammar is composed of all possible graphs (molecules) that can be 
constructed from the so-called starting graphs. The retro-synthetic analysis is treated as the 
parser which provides an answer to the question "is a graph element of the given language?" . 

] n our previous communication 1 we have suggested the graph-theory formalism 
of the organic chemistry. The molecular system is considered as a multigraph with 
loops, its vertices are evaluated by surjective mapping onto the vocabulary of vertex 
labels (e.g. atomic symbols). In the framework of this formalism it is possible to give 
unambiguous determination of many notions and concepts that are naturally 
in the computer simulation of organic chemistry. In particulat, the Corey's concept 
of synthon (which plays a fundamental role in the so-called first-generation programs) 
was determined 1 •2 as a special subgraph of the given graph. The synthons allow 
to overcome many problems and pitfalls with proper coding of chemical reactivity, 
a synthon is assigned directly to a preselected type of reaction. What is slightly 
discouraging here, to cover all most important chemical reactions we have to use 
few hundreds different synthons, it may give rise to very serious technical difficulties 
in an actual implementation of this technique. This unpleasant feature of the pure 
synthon approach is partially sormounted by making use of the mechanistic ap
proach3 -12 (the second-generation programs). It means that the pertinent synthons 
are not apriori prescribed but they are generated following simple chemical heu
ristics and/or qualitative (semi-quantitative) calculations. Hence, the mechanistic 
approach needs a simple as well as efficient mathematical model of chemical reactivity 
of organic molecules. To our knowledge, this is the main problem not yet resolved 
in the implementation of second-generation programs. 

The purpose of this communication is to formalize the Corey's synthon approach 
in such a way that a formal graph grammar is elaborated. It means that the organic 
chemistry (of course, only in the framework of the synthon model) may be formally 
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considered as a graph language induced by the graph grammar. This offers very 
powerful formal tool to support our tries to implement a computer program which 
will simulate the organic chemistry in whole its diversity. 

The graph grammars are extensively used in the syntactic methods of pattern 
recognition 13. They are usually formed in such a way that there exists a simple 
formal correspondence with the standard string grammars I4

•
15

• This is not very 
appropriate for the present purposes, therefore we shall formulate initially a special 
type of string grammar which may be formally considered as a realization of the 
context-sensitive grammar l4

. Then we formulate a graph grammar with direct 
correspondence with our string grammar. Usually, the string grammars are defined 
by making use of an auxiliary device of the so-called non-terminal symbols that are 
serving for the generation of the proper strings. The concept of non-terminal 
symbols is now fully omitted, in some extent they are substituted by the notion 
of initial strings (see below). 

Recently, the web grammar of Phaltz and Rosenfeldl 7
. 1

3 (a special type of graph 
grammar) has been used in chemistry by Balaban and coworkers l6 in the generation 
of acyclic isopreniod structures. 

String Grammar 

The alphabet I = {a, b, c, ... } is a finite set of symbols a, b, c, .... The set I* 
is composed of all possible strings that can be formed over the alphaber I, including 
the so-called empty string Jc, 

I* = {A, a, b, ... , aa, ab, ba, ... , abc, bca, ... } , (1) 

where the strings that are composed of the same symbols but different in their order 
are considered as distinct (e.g. the string ab and ba are distinct). The strings are 
denoted by lower-case Greek letters. The length of string a E I* is the number 
of symbols in the string, it will be denoted by lal. By definition, the length of 
empty string is zero, P,I = O. The concatenation of two strings ai' a'2 E I* is a string 
a = a' l a2 from I*. In particular, for the empty string we have Aa = aA = a, for an 
arbitrary a E I*. The string f3 is a substring of the string a (formally f3 ~ a) iff the 
string a may be written as a = af3y, 

The central concept of a grammar (introduced over the alphabet I) is a finite 
(non-empty) set ~ of the so-called productions, which describe how the strings 
of a language are to be generated. In order to specify the set of production we have 
to introduce the following two non-empty sets: 

(1) The set of left strings 

(2a) 
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(2) the set of right strings 

(2b) 

Then the set of productions, ~, is defined as a subset of the direct product of V1s 

and V' s, 

(3) 

Hence, a production P E ~ is a pair of strings (ex, [3) [we shall use the descriptive 
convention ex ~ [3), for ex E V1s and [3 E v..s. We say that a string (5' is directly derived 

from a string (5((5 ~ (5 ' ) by making use of the production P : ex ~ [3 if the strings (5 

and (5' may be written as (5 = wexx and (5' = w[3X. In general , the term (5 ~ (5' 

denotes that a stri ng (5' is derived from a string (5, then we have a sequence of strings 

(51 ' (52' .. . , (5n sllch that (5 = (51) (5' = (5n , and (5i + 1 is directly derived from (5i' 

• ((5i ~ (5i + 1), for i = 1,2, ... , n - 1. The sequence (5[, (52 ' .. . , (511 is called the 
derivation of (5' from (5. 

Let us introduce a non-empty set of start ing strings 

(4) 

where we require that each string J1 E v's has at least a one substring from the set V1s ' 

i.e. for an arbitrary Ii E Vss there exists a substring ex £; II such that ex E V1s ' Now 
we are ready to define a grammar G as the ordered 2-tuple 

G = (v.,,~). (5) 

The language L( G) induced by this grammar G is the set of all possible strings that 
can be derived from the starting strings in v." 

L(G) = {(5; there exists a starting string J1 E v's such that Ii ~ (5} £; 1* . (6) 

Example 1. The alphabet L is determined by 

L ={a,b,e}. 

The sets V1s a nd V's are 

V1s = {aa, ab, ae, eb} , 

V' s = {aab, baa, eaa, aae, bbe} . 

The set of productions S).I is a subset of V1s X C,s' e.g. we put 

P1: aa -->- aab, 

P2 : ab ->- aab, 
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Finally, the set of sta rting strings is 

Vss = {Ill = aab, 112 = acb} . 

Let us try to construct a few ill ustrative samples of the language L(G) induced by the grammer G = 

= (Vss' I}.I). For instance, we start from til ' it contains two substrings aa and ab that a re left 
members of the productions PI and P2, respectively. We get 

P, 

{ 

---;: aabb = 0"1 ' 

III = aab P 2 
~ aaab = 0"2' 

In similar way, for the starting string 11 2 we get 

P3 

{ 

=-----;: aacb = 0"3 ' 
112 = acb P4 

~ abbe = 0"4' 

The strings 0"1 to 0"4 can serve for the production of next strings that are bel onging to the language 
L(G), 

{

P I 
---;: aabab = 0"7 ' 

P, 
0"2 ==;'; aaabb = 0"6 ' 

P2 
~ aaaab = 0"8' 

{

PI 

~ aabcb = 0"9' 
P3 

0"3 ---;: aaacb = 0"10 , 

P4 

----'; acbbc = 0" I 1 ' 

P2 
0"4 -.---;. aabbc = <712 • 

T he language L( G) is composed of the following strings with the length 4 or 5, 

L(G) = {aabb, aaab, aacb, abbe, aabbb, 

aapb, aabab, aaaab, aabcb, 

aaaeb, acbbc, ... } . 

After a grammar is constructed to induce a language, the next step standing before 

Collect ion Czechoslovak Chern. Cornrnun. [Vol. 48] [1983] 



2122 Kvasnicka : 

us is to suggest a recognizer that will recognized the strings generated by the grammar. 
Formally, let us have a string a E I*, then the recognizer solve the following problem: 
a E L(G)? The process that would result in an answer to such a question with respect 
to the given grammar G is, in general, called syntax, analysis or parsing. In addition 
to get an answer "yes" or " no", the process can also provide the generation of the 
so-called derivation tree of a. 

A very simple and straightforward form of implementing the recognizer is to look 
for in the input string a a substring f3 (f3 £ a) which is equal to the right string 
of a production P : rx -> /3. We arrive at the string a' , symbolically a' (L a (this is 
called the retro-production). The whole process is repeated for the produced string 
a', etc. , 

p 
a~ ... (J" 

P 
(J/~ (J . (7) 

The process is stopped if the resulting a does not conta in a substring which is the 
right string fJ of an arbitrary production P. Finally, if the string (j belongs to the set 
of sta rting strings Vss (i.e. (j E V<s)' then the input string a is recognized from the 
langu age L(G) [i.e. a E L(G)], in the opposite case the input string a is not an element 
of L(G). 

Example 2. Let us recognize the input string u = aabbbc whether it belongs or not to the la ngu
age L(G) induced by the gra mmar G describe in example l. The deriva tion tree is illust rated 
in Fig. I. We see that the input string u E L(G) can be derived from the starting string /1 2 = arb 
by three independent ways, 

P, p. P, 
11 2 ~ aaeb =----.;:: aaMe =====;; (J , 

P, P, P4 
112 =====;; aacb =====;; aabcb ---; (J • 

Hence, the present simple recognizer offers not only an answer to the question " is U E L(G)?" but 
produces as a by-product the derivation tree from which it is easy to see the retro-deriva tion 
of (J. 

Graph Grammar 

Consider the graph 1 

its synthon is 

G = (V, E, L,qJ, m), (8) 

(9) 

The graph G can be written as a union of the synton G( Q) and the synthon comple-
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ment G( Q) = (VQ' i!Q' LQ, (P, m), 

G = G( Q) 11 G(A) , (10) 

where 

(1ia) 

(lib) 

(i ie) 

The synthon G(Q) and the synthon complement G(Q) are edge and loop disjoint 
[Eqs (11 b) and (11 e)], while, in general, the vertex sets VQ and VQ have common 
vertices. 

A production P is determined as the ordered 3-tuple 

(12) 

FIG. 1 

The derivation tree of the string 0' = aabbbc. The oval block indicates that the given leftmost 
string belong to the set III composed of the starting strings 
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where 

(13a) 

(13b) 

are the so-called left and right synthons, respectively. The term 7r in (12) is called 
the matching rule (see below). 

Now we specify what it means when one says that the production Pis aplied to the 
graph G. The matching rule 7r classifies some vertices in GI and Gr as the matching 
vertices. Formally, we put 

7r = (VI ,match' Vr,match' w), (14) 

where the vertex subsets Vl ,mat ch £; VI and Vr,ma tch £; Vr are composed of the same 
number of vertices (i.e. ! VI,ma tch! = ! Vr ,ma tchj). The symbol w is a bijective mapping 
of Vr,match onto VI , matel" w: Vr ,mat ch -+ VI ,match' which conserves the evaluation 
of vertices, i.e. w(v) = v' implies CPr,(v) = CPI(V'). In the initial stage of the application 
of P to G we have look for a synthon G(Q) £; G which is isomorphic with the left 
synthon Gl E P. According to this isomorphism some part of vertices in G are 
unambiguously classified as the matching vertices, they form a subset of V denoted 
by VO (Ol,match' It can be alternatively determined [knowing the decomposition of G 
in G(Q) and G(Q)] as a subset composed of those vertices that are simultaneously 
appearing in Vo and Yo' 

(15) 

Since the synthons GI and G(Q) are isomorphic we may formally construct a bijective 
mapping t/I : VI,match -+ VO(Q).match' it is realized as a restriction of the original bijective 
mapping of VI onto VO(Q) introduced in the framework of this isomorphism. Com
posing the mappings wand tjJ we get the bijective mapping X = wtjJ : v..,ma tch -+ 

-+ VO(Q) ,match ' i.e. if v E Vr , match then w[tjJ(v)] = v' E VO(Ol,m atch and CPr(v) = cp(v'). 
By using this new bijective mapping X we are able to assign to the right synthon Gr 

an isomorphic graph G; in such a way that the matching vertices in Gr are substituted 
by the corresponding ones in G( Q). Finally, we determine the application of the 
production P to the graph G as the union of the graph G; (defined above) and the 
synthon complement G(Q), 

G~GI=G;UG(Q). (16) 

Simply speaking, the application of the production P to the graph G means that 
a subgraph in G is substituted by another subgraph, these subgraphs are isomorphic 
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with the right and left synthons, respectively, and the matching rule 7t ensures the 
unambiguity of whole process. 

Example 3. Let us consuder the graph l 

The production P is determined by 

( 
1~2' 1~' 3") p= G = ) G = ) " I r 2" 

It is easy to see, with respect to the left synthon G I , that the graph G may be decomposed on the 
synthon G(Q) and the sy nthon complement (;(Q) as follows 

G 1) U3~ 
2" 3 

G(Q) G(Q) 

The matching rule is specified by 

1t = (VI ,match = {I'}, Vr,match = {I"}, w: 1" ->- I ') . 

The mapping 'I' induced by the isomorphism of G I and G(Q) is simply determined by '1' : l ' -+ 3. 
Hence, the composed mapping X = (f)'I': I" ->- 3. Of course, the evaluation of vertices 1 '. 1", and 3 
should be of the same type. By using the mapping X we construct 

G'= 3 _0 3" 
r~ 

which is isomorphic with the original right synthon Gr' Finally. the result of the production P 
applied to the graph G is 

I>~"I~" G'=:3 -U 3 2" - 3 2' 
2 2 

We define the so-called graph grammar in similar way to the string grammar. The 
non-empty set ~ is composed of the productions, 

(17) 
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where each production P E \.p is determined by the formulae (12) and (13). The 
graph G' is directly derived from the graph G if there exists such a production P E \.p 
that the relation (16) is satisfied, i.e. G b) G'. This can be simply extended to the fol
lowing more general notion: The graph G' is derived from the graph G (formally 
G .b) G') if we have a sequence of graphs G1 , G2 , •.• , Gn such that G = G1, Gn = Gr

, 

and G;+l is directly derived from G; (G; ~) G;+d, for i = 1,2, ... , 11 - 1. The 
sequence of graphs G1 , G1 , ... , Gn is called the derivation of G' from G. 

Let us introduce a non-empty set of starting graphs 

(18) 

We require that each starting graph GSg E m has at least a one synthon which is iso
morphic with the left synthon G1 of a production P E \.p. Finally, the graph grammar is 
is determined as the ordered 2-tuple 

(19) 

The language L(<fi) induced by the grammar <fi is the set of all possible graphs derived 
starting graphs in ~r, 

L(<fi) = {G; there exists a starting graph Gsg Em such that Gss *) G}. (20) 

We give the following simple interpretation of the above formalism: The molecules 
are identified (formally) with the graphs, they represent unambiguously their ~on
stitutional formulae. The reactions that can run over the molecules are determined 
by the productions PI' P 2' ... , the set \.p is a formal representation of a set of reactions 
that are available for the chemical transformations. The grammar G> then means 
a chemistry over the starting molecules performed by the reactions from the set 'l3. 
The language L(G» is composed of all possible molecules that can be synthetized 
from the starting molecules. 

The recognizer of graphs from the language L(G» may be constructed in similar 
way to our illustrative string grammar. Here the main problem is to suggest a method 
providing an answer to the following question: Is G E L(<fi)? 

Assume that we have a production P = (G1, G., 11:) E \.p. Then we look for in the 
analyzed (parsed) graph a synthon G(Q) which is isomorphic with the right synthon 
Gr E P. The graph G is equal to 

G = G(Q) u G(Q) , (21) 

where G(Q) is the synthon complement. The matching vertices in G are 

VG(Q),match = VG(Q) n VG(Q) . (22) 
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Employing the matching rule n and the isomorphism between Gr and G(Q) we are 

able unambiguously to construct bijective mapping X' : VI.mulch ~ VG(Q),malch which 
conserves the evaluation of matching vertices. From the left synthon GI we con
struct an isomorphic graph G~ in such a way that the matching vertices in GI are 
substituted by the corresponding (from the standpoint of mapping x') ones in G( Q). 
The resulting graph G' of this inverse application of the production P to the graph G 
is determined as the union of the synthon complement G( Q) and the graph Gil ' 

G' = G~ u G( Q) < P G, (23) 

where < P denotes the inverse application of the production P (which will be 
called the retro-production). 

Example 4. We illustrate the present approach of the retro-production notion on the example 3. 
The input graph G is 

G= 1"""3~ S 
2~ 

The production P is the same as in example 3. With respect to the right synthon Gr the graph G 
is expressed as follows 

G<>3 U3~ 
G(Q) G(Q) 

where the synthon G(Q) is isomorphic with the right synthon Gr' The matching vertices in GCQ) 
are determined by VG(Q).malch = {3}, and the mappin g X': 3 -+ 1' . It means that the graph G; 
(isomorphic with G I) is 

Finally, the result of the inverse application of P to the graph G is 

The resulting graph G' is isomorphic with the starting graph G in example 3, which was to be 
Obtained. 

After this simple example illustrating the notion of retroproduction we turn our 
attention again to the construction of a parser for the language L(OJ). We would like 
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to get an answer to the question whether or not a graph G belongs to the language 
L(ffi). The above procedure is repeatly applied to the graph G, 

- p P' P 
G ::'== ... G" ~--- G' ~ G . (24) 

The process is stopped if the resulting graph G does not contain a synthon which is 
isomorphic with the right synthol1 of an arbitrary production P E 1.13. Finally, if the 
graph G E Ill, then the input graph G is recognized from the language L(ffi), in the 
opposite case the input graph G is not an element of L(ffi). The present simple re
cognizer offers not only an answer to the question "is G E L(ffi)?" but produces 
as a by-product the derivation tree of the graph G. 

Conclusions 

We have demonstrated that the Corey's concept of synthons can be formalized in such 
a way that a special kind of graph grammar is suggested. The graph language induced 
by this grammar is composed of all possible graphs that can be constructed from the 
starting graphs. The retro-synthetic analysis is treated as the parser which gives 
an answer to the question "is a graph element of the given grammar?". If "yes", 
then we are sure that the considered graph may be constructed from the starting 
graph, and moreover, the parser has provided also its derivation tree. Consequently, 
one can say, the organic chemistry (at least, in framework of synthon approach) 
is formally equivalent to the graph language, its syntax and some part of tht theory 
of chemical reactivity are covered by the corresponding graph grammar. .. 

The allthor wishes to express his appreciation fvr many IIseflil and stimlllating dhcussiolls with 
Professor M . Kraloclzvil and Dr J. Koca. 
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